About

We work across pristine and human modified temperate and tropical forest ecosystems to understand and generate new knowledge about their functionality, health and resilience. We contribute knowledge and tools for biodiversity positive and nature based solution analyses and aim at Increasing the positive impact of Earth Observation and ecological knowledge for evidence based policy making at local and global scale.

There is a tremendous need for understanding the state of our natural ecosystems. This need has been exacerbated due to the known decline in biodiversity and natural resources, in part due to Land use conversion, degradation of land and Ocean systems and climate change.

Although it is widely known that the terrestrial and ocean ecosystems are changing and tools have been developed to try to quantifying those changes we are still facing a lack of tools and indices that allow us to go beyond quantifying number of species, fragments, sizes and other spatial components towards finer structural, morphological and chemical aspects. Developing knowledge about the above highlighted aspects can improve our understanding about the processes of nature recovery and health of our ecosystems the process of nature recovery the process of nature recovery at small and large spatial extents.

We use Remote Sensing and in general Earth Observation as the science that quantifies aspects of an ecosystem without being in direct contact with it. Up to now we have mostly used remote sensing products to quantify discrete aspects of local and global areas, such as counting the number of fragments in a landscape, its connectivity, distance between fragments and sizes, and for characterizing land use and quantifying its changes. Besides generating those common landscape metrics we are also using satellite and UAV (unmanned aerial vehicles) remote sensing to bring a novel understanding on the structure, morphology and chemistry of land ecosystems across space and time. With our new approaches we are gaining a new understanding on ecosystem health, their paths to recovery and their resilience to global environmental change.

We use multi/hyperspectral and vegetation structure from LIDAR (light detection and ranging) sensors mounted in drones which imagine the landscapes at extremely high spatial and spectral resolution of a few centimetres. We also make use of state of the art satellite earth observation to extrapolate our local findings to the regional and global extents. We are currently specially working with the Copernicus constellation of Sentinel satellites from the European Space Agency (ESA) and the Landsat satellites and GEDI LiDAR (Global Ecosystem Dynamic Investigation) missions from NASA.

Projects

Theme outputs

    Huanyuan Zhang-Zheng, Stephen Adu-Bredu, Akwasi Duah-Gyamfi, Sam Moore, Shalom D. Addo-Danso, Lucy Amissah, Riccardo Valentini, Gloria Djagbletey, Kelvin Anim-Adjei, John Quansah, Bernice Sarpong, Kennedy Owusu-Afriyie, Agne Gvozdevaite, Minxue Tang, Maria C. Ruiz-Jaen, Forzia Ibrahim, Cécile A. J. Girardin, Sami Rifai, Cecilia A. L. Dahlsjö, Terhi Riutta, Xiongjie Deng, Yuheng Sun, Iain Colin Prentice, Imma Oliveras Menor & Yadvinder Malhi (2024). Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia. Nature Communications.

    Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.

    Publications
    LCNR supported
    • Society
    • Scale
    • Remote sensing

    Jesús Aguirre-Gutiérrez, Nicola Stevens, Erika Berenguer (2023). Valuing the functionality of tropical ecosystems beyond carbon. Trends in Ecology & Evolution.

    Land-based carbon sequestration projects, such as tree planting, are a prominent strategy to offset carbon emissions. However, we risk reducing natural ecosystems to one metric – carbon. Emphasis on restoring ecosystems to balance ecosystem services, biodiversity conservation, and carbon sequestration is a more appropriate strategy to protect their functioning.

    Publications
    LCNR supported
    • Scale
    • Remote sensing

    Aguirre‐Gutiérrez, Jesús, et al. (2019). Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecology Letters 22.5: 855-865.

    Publications
    LCNR associated
    • Scale
    • Remote sensing
See all outputs for this theme